
The Compromised Satellite Peripheral Dilemma

Rachel McAmis ∗†, Connor Willison ∗, Richard Skowyra ∗, Samuel Mergendahl∗

∗ MIT Lincoln Laboratory
Secure Resilient Systems & Technology

Lexington, MA
{rachel.mcamis, connor.willison,

richard.skowyra, samuel.mergendahl}@ll.mit.edu

† University of Washington
Seattle, WA

rcmcamis@cs.washington.edu

Abstract—Satellite systems enable many capabilities for their
users, such as high-speed, low-latency communications, weather
forecasting, geographic imaging, and defense applications. As cus-
tomers increase their reliance on this critical infrastructure, the
risk of attack only increases, particularly from highly-resourced
adversaries. However, in this work, we demonstrate that common
existing space system software platforms are poorly equipped
to handle malicious satellite peripherals. Using NASA’s popular
open source core Flight System software (cFS), we show that
with current satellite software and industry-standard reliability
techniques, a system designer will inevitably confront a dilemma:
Either the system deploys countermeasures against malicious
components and suffers degraded nominal performance, or the
system cannot survive malicious components. We conclude by
proposing challenges and considerations towards resolving this
dilemma.

I. INTRODUCTION

An unprecedented number of commercial satellite
launches [1] has recently led to the emergence of space
systems as an unofficial category of critical infrastructure.
These commercial systems provide high-speed, low-latency
communications, position, navigation, and timing (PNT) [2],
weather forecasting [3], and geospatial imagery [4], among
other applications. Commercial satellites deploy most
frequently into Low Earth Orbit (LEO) due to lower launch
costs [5] as well as the desire to use commercial-off-the-shelf
(COTS) components, which are less suited to the longer
mission lifespans and harsher conditions of higher orbits [6].

Given the critical nature of space systems, cybersecurity
is of utmost importance. Satellite security has traditionally

DISTRIBUTION STATEMENT A. Approved for public release. Distri-
bution is unlimited. This material is based upon work supported by the
Department of the Air Force under Air Force Contract No. FA8702-15-D-
0001 or FA8702-25-D-B002. Any opinions, findings, conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Department of the Air Force. © 2026
Massachusetts Institute of Technology. Delivered to the U.S. Government
with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014
(Feb 2014). Notwithstanding any copyright notice, U.S. Government rights
in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014
as detailed above. Use of this work other than as specifically authorized by
the U.S. Government may violate any copyrights that exist in this work.

focused on the protection of communication links [7], but
more expansive threat models have been proposed recently [8],
[9]. For example, the threat of memory corruption should
concern satellite designers since attackers can leverage these
common vulnerabilities to launch advanced code reuse attacks
and circumvent many defenses.

One understudied aspect of satellite system security is the
inherent trust of the micro-controller software found in satellite
peripheral subsystems. As space companies increasingly rely
on outsourcing components to decrease cost and development
time, the risk of software supply-chain attacks originating
from peripheral subsystems also increases. Common satellite
peripherals include star trackers, reaction wheels, or other sen-
sors and actuators, and the software running in these peripheral
subsystems is often proprietary and treated as a black-box
by mission designers. This can lead to situations where the
flight computer places undue trust in the code and data of
the peripheral subsystems. While some satellite security work
has touched on the risk of software supply chain attacks on
satellites [8], as well as the risk of external physical disruption
of satellite sensors [9], the impact of a compromised peripheral
subsystem on the flight computer has not been experimentally
evaluated. At the same time, adversary incentives for such
attacks have increased due to emergence satellite fleet and bus
companies that produce at-scale. A supply chain attack on
satellites could now impact an entire fleet at once.

In this work, we explore the impact of a compromised
peripheral subsystem on a satellite. We investigate a typical
Guidance, Navigation, and Control (GNC) subsystem on a
spacecraft that uses a star tracker sensor peripheral, an At-
titude Determination and Control (ADCS) feedback loop, and
reaction wheels as actuator peripherals. We demonstrate that
without any protections, a malicious star tracker peripheral can
cause GNC failure through easily executed attacks. Specif-
ically, we demonstrate that the ADCS software component
on the on-board computer acts erroneously when the sensor
peripheral either sends corrupted data or nominal data at
unexpected frequencies.

Additionally, we show that two commonly deployed soft-
ware resiliency strategies are insufficient against a malicious
peripheral. Namely, we study the detection of anomalous

Workshop on Security of Space and Satellite Systems (SpaceSec) 2026
23 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-1-1
https://dx.doi.org/10.14722/spacesec.2026.23045
www.ndss-symposium.org



sensor input against configurable thresholds, and secondly, the
use of sensor fusion with a redundant set of sensor peripherals.
Historically, these strategies are believed to provide resilience
against faulty components. However, we find that neither
strategy is effective against malicious components.

We observe a design trade-off for system configuration on
satellites given these resiliency strategies: Either the system
deploys countermeasures against malicious peripherals and
pays a cost in nominal mission performance, or the system
cannot survive against malicious peripherals. This dilemma
suggests that satellite operators face significant challenges if
they use existing tools to defend against malicious peripherals.

Previous work has mentioned the dilemma of attack de-
tection sensitivity and its impacts on reliability and runtime
[10], but this problem has yet to be considered in the satellite
context. Lu et al. highlights the need for more domain-specific
work on cyber-physical system attacks and recovery research,
as each domain has its own constraints and challenges [11],
and we aim to address this gap by providing evaluation
of possible attack scenarios in the satellite domain. The
satellite domain poses different constraints compared to other
robotic vehicles like drones, a common platform for testing
sensor attacks and associated recovery techniques [12]–[14].
Compared to drones, satellites must handle a much longer
mission, taking up to multiple years. Satellites must be able to
handle very stealthy attacks that may only cause measurable
impacts over periods longer than a single drone mission. A
satellite’s location must be precise to stay in the correct orbit
while pointing its communications module and sensors in
the correct direction, whereas a drone might be able to land
many meters away from its target landing destination while
still executing a safe mission. Other unique considerations for
satellites are their possible vulnerability to hardware faults due
to radiation in orbit, and the complexity of multiple control
systems and sensors operating on a machine with limited
power and computation to put towards attack detection.

After we provide the relevant background necessary in Sec-
tion II and introduce our studied threat model in Section III,
our work makes several contributions:

• We introduce a series of malicious behaviors that a
compromised peripheral can employ as an attempt to
degrade a satellite mission in Section IV. We show these
for the first time on a satellite system within the emulated
system described in Section V.

• We characterize the impact of a malicious satellite pe-
ripheral micro-controller on the on-board flight computer
in Section VI.

• Further, in Section VI, we implement and evaluate two
resilience strategies commonly used in satellite missions
and highlight their limitations.

• We argue that existing anomaly detection and recovery
systems are insufficient for the satellite context in our
attack model.

II. BACKGROUND

a) Satellite System Architecture: Satellite systems typ-
ically consist of a central flight computer that interfaces
with several peripherals. The flight computer orchestrates
communication between each of the peripheral subsystems,
hosts software to perform soft real-time control loops, and
performs command and data handling tasks. Peripherals may
have responsibilities ranging from non-volatile storage to
mission-specific sensors and actuators. As separate hardware
components connected to the on-board computer over a se-
rial link, these peripherals contain their own microprocessors
which manage the low-level, hard real-time control loops
specific to that peripheral. Many peripherals on a satellite
interface to sensors and actuators to enable the flight software
on the central flight computer to interact with the physical
environment.

b) Guidance, Navigation, and Control: Star trackers are
sensors which are employed on satellite buses to gather
information about the spacecraft’s attitude (orientation). A
star tracker is an optical sensor which is purpose-built for
capturing starfield images and computing attitude solutions
using a database of known celestial bodies. The result of a star
tracker measurement is an attitude quaternion describing the
orientation of the spacecraft. This is used to inform an attitude
estimate as part of a sensor fusion strategy, which combines
data from one or more star trackers and other sensors to reject
noise and achieve higher precision. Moreover, reaction wheels
are often deployed to adjust the satellite orientation as needed.
See Figure 1 for a high-level view of how a star tracker
might work, with potentially malicious actors in the sensor
data pipeline.

c) NASA core Flight System: The core Flight System
(cFS) [15] is a modular flight software framework developed
by NASA. cFS is written in C and uses a message passing
architecture over a software bus to facilitate communication
between applications. Each application in cFS is separately
compiled and runs in a dedicated thread. The modular design
of cFS contrasts sharply with traditionally designed flight soft-
ware systems, which typically have monolithic architectures.
The modular nature of cFS benefits mission reusability.

The limit checker is an optional cFS application that mon-
itors software bus telemetry for anomalous values according
to a configurable set of watchpoints and action points [16].
The watchpoints define which application messages (and their
associated values) to monitor. The action points define what
conditions indicate anomalous values and specify the relevant
remedial actions to take under any met conditions, such as
ignoring future packets from the anomalous source.

d) Satellite Security Research: There exist many chal-
lenges to implementing security in the satellite context, includ-
ing the inability to physically access the satellite post-launch,
emphasis on safety and availability over confidentiality, and
handling radiation faults [8].

Recent work has shown that satellites in industry and
academia practice insufficient security [17], [18]. Jero et
al. propose future approaches to a more in-depth security



posture beyond communication security, such as reverting to
a “safe mode” [8]. However, safe mode typically does not
prevent malicious peripheral attacks, as it may inherently trust
important sensors like the star tracker.

While previous satellite security research has touched on
supply chain security [8], [19], [20], to our knowledge none
have evaluated the details of what such a supply chain attack
entails, including whether firmware or software is compro-
mised, how and when the satellite might be compromised, or
the persistence of such a compromise. For example, Pavur
et al. list a “threat matrix” toolbox through synthesis of
previous satellite security research [19]. This toolbox does not
include any mention of malicious peripherals or the impact
of incorrect sensor data through stealthy attacks. However,
Pavur et al. does highlight institutional barriers leading to the
fact that “almost no technical research exists on the defense
and monitoring of systems in orbit”, and that this is likely
“due to substantial logistical barriers involved in accessing and
conducting research with representative space hardware” [19].
We overcome this barrier through extensive effort in building
out a representative satellite simulation using NASA cFS
along with configurations for different peripheral attacks and
detection methods.

III. THREAT MODEL

We assume a typical satellite system architecture in which
an on-board computer deploys flight software such as cFS in
order to manage multiple peripherals connected to the on-
board computer over a serial link. Specifically, there exists
three COTS star trackers and multiple reaction wheel hardware
peripherals each with their own micro-controllers connected to
the on-board computer that operates the Attitude Determina-
tion and Control (ADCS) soft real-time loop for Guidance,
Navigation, and Control (GNC). To improve the reliability of
the system, the ADCS component performs sensor fusion on
the redundant star tracker data, and a limit checker application
monitors the star tracker data for signs of anomalies. Addi-
tionally, we assume one star tracker to be compromised. This
could be due to a malicious supply chain attack given the
increasing reliance on blackbox COTS components, or some
other external force such as sensor spoofing [9]. From the
compromised star tracker peripheral, the adversary attempts
to degrade the overall attitude of the satellite. See Figure 1
for more details.

In a compromised supply chain scenario—which is the main
threat scenario for this paper—the peripheral has access to the
true sensor measurements. Because of its malicious firmware
onboard, the peripheral can construct its measurements based
on knowledge of the true sensor values. This enables a finer-
grained attack that differs from an honest but faulty setting,
where the sensor values or timing at which values are sent are
not intentionally constructed.

IV. ATTACKS AND COMMON MITIGATIONS OVERVIEW

In this section, we introduce two types of attacks that
a compromised satellite peripheral could launch, as well as

Flight Software

ADCS

Star Tracker 3 
HW Peripheral

Star Tracker 2 
HW Peripheral

Star Tracker 1 
HW Peripheral

On-board Computer

Star Tracker 1 
Software

Star Tracker 2 
Software

Star Tracker 3 
Software

Reaction 
Wheel SW Limit Checker

Reaction Wheel 
Peripheral Satellite Bus

Sensor Fusion

Reaction 
Wheel SW

Reaction Wheel 
Peripheral

Reaction Wheel 
Software

Reaction Wheel 
HW Peripheral

Software Bus

Monitoring

Fig. 1: Threat model of malicious peripheral.

two resiliency strategies commonly deployed in space system
software. As mentioned in Section III, we contextualize these
attacks and defenses with respect to the GNC subsystem of a
satellite.

a) Attack Impact: In a real satellite mission, incorrect
attitude data can cause the satellite to be incorrectly positioned,
thereby moving the payload and communications module away
from where they should be relative to Earth. This can ruin the
mission by preventing collection of the correct data (e.g., if the
payload is a sensor collecting images), preventing the satellite
from pointing its solar panels properly to the sun and thus
losing power, or causing the satellite to lose communication
with its ground station due to incorrect radio positioning.
Incorrect sensor data can not only cause the satellite to point in
the wrong direction, but can also cause the satellite to tumble
(i.e., spin uncontrollably).

b) Studied Attacks: We separate our attacks into two
axes: attacks related to manipulating time without any ma-
licious data manipulations, and attacks sending incorrect data
without any malicious time manipulations. The first attack we
evaluate is a Manipulated Data Attack, where the compro-
mised star tracker peripheral sends incorrect data values. The
second attack we evaluate is a Manipulated Time Attack,
where the star tracker data is correct, but sent at an unexpected
frequency. Specifically, in each time period, we withhold the
N star tracker data points and instead send them as close
together as possible in a burst of size N . Of course, an
adversary could combine these two attack techniques (e.g.,
flooding maliciously crafted data), but we study the disjoint
version of the attacks in order to ensure one technique does
not influence the impact of the other technique.



c) Satellite Reliability Techniques: When a satellite de-
veloper is preparing for a mission, they often value reliability
over security [17]. In particular, the nominal behavior of a
satellite must work extremely reliably, but developers must
also prepare for issues such as radiation-induced faults. To sur-
vive faults and increase overall reliability, satellite developers
often use multiple approaches. The first common reliability
approach on satellites is to use redundancy. For example, a
GNC subsystem might deploy three different sensors each
separately determining orientation, and fuse together mea-
surements from all three sensors to output a more robust
estimate of the true orientation of the satellite. Indeed, in
our evaluation (Section V), we simulate data from three star
trackers, where only one is malicious. While redundancy is
useful for recovering from faults in the nominal case, using
redundancy when at least one sensor is malicious can be
ineffective, as shown later in Section VI.

The second reliability approach commonly used is a
threshold-based limit checking scheme to monitor sensor data
for analogous conditions. For example, the NASA cFS flight
software contains the Limit Checker application for this pur-
pose. The limit checker is used to detect when values are out
of range and trigger action on those detections. For example,
the limit checker can have a watchpoint that detects when the
temperature of a satellite’s battery is too high, and can trigger
an action to cool the satellite. Or, a watchpoint could verify
that the satellite’s star tracker data is within the expected range
for its unit of measurement (between -1 and 1 for quaternions),
and shutdown the sensor if that range is not met, with the
assumption that a temporary fault may lead to an out-of-range
value. While useful in honest settings, we show in our results
that a limit checker is poorly suited for handling malicious
peripherals.

V. EXPERIMENTAL SETUP

In this section, we describe our satellite emulation envi-
ronment and test flow for launching the attacks introduced in
Section IV.

A. Emulation framework

We emulate a typical GNC subsystem using a software-only
test harness that deploys cFS on Linux as the flight software
for the on-board computer. The spacecraft is instantiated
within the Basilisk astrodynamics framework [21], actively
used in research and industry for testing, which simulates the
rigid body dynamics of the vehicle in Low Earth Orbit (LEO).
Additionally, cFS deploys custom applications from Basilisk
that implement a simple attitude control loop using emulated
sensors and actuators to create a closed-loop emulation of the
satellite.

In particular, a star tracker application ingests attitude state
information from the simulation to model the behavior of
a physical star tracker sensor. The sensor data is forwarded
to the ADCS application, which uses an attitude control
algorithm from Basilisk to compute the reaction wheel torques
necessary to maintain an attitude reference. A reaction wheel

application consumes the torques and forwards them to the
simulation, where they are integrated into the rigid body
dynamics to emulate the behavior of physical reaction wheels.
The simulation feedback loop through cFS executes at a rate of
1 Hz and achieves stabilization to a given reference attitude
within 30 seconds under honest (nominal) conditions. This
simple attitude control test harness allows for the execution
of maneuvers by sending a command to change the attitude
reference.

Because we are more interested in the impact of a compro-
mised peripheral—rather than how it became compromised—
the test harness also includes commands to trigger attacks from
the malicious star tracker, as well as system configurations to
adjust the settings for the deployed resiliency mitigations.

B. Attack Setup

The procedure is as follows for both manipulated time and
manipulated data attacks:

1) Step 1: Ensuring limit checker metrics meet honest
sensor requirements. Before performing any attacks, we
first define the limit checker configuration based on the
distribution of expected nominal data and the level of
acceptable risk for the mission (e.g., tighter min and max
limit thresholds are more conservative against faults, but
may cause degradation of nominal performance). This
procedure represents the actions a satellite developer
might take to improve the satellite’s reliability. We only
tune the limit checker for star tracker data so as to only
focus on one satellite subsystem.

2) Step 2: Perform attacks. We then perform attacks that
1) operate within these limit checker thresholds so as
not to trigger any action, and 2) operate slightly out
of those thresholds to show the impact of detecting an
attack that is not stealthy. We show that operating within
these thresholds can still lead to mission failure, and
even detection of non-stealthy attacks has performance
slowdowns.

We evaluate these limit checker settings and attacks both
with and without sensor redundancy, and show that redundancy
cannot necessarily help survive attacks, even if only one out
of three star tracker sensors are malicious.

C. Testing

The test flow is as follows. First, a maneuver is triggered
by an attitude change command to reach a target attitude after
starting from a different initial attitude. Then, after a time
delay, a command triggers the attack. If the satellite has not
achieved the reference attitude to a given tolerance after 120
seconds, the simulation is terminated. In particular, our tests
attempt an attitude maneuver from starting quaternion values
of

q0 = [1, 0, 0, 0]T

to the target quaternion values of

q1 = [0.6002842, 0.4617571,−0.4617571,−0.4617571]T



These target orientation were chosen without loss of generality
and at random.

VI. ATTACK RESULTS

In this section, we leverage the emulation framework from
Section V to report the impact of the data manipulation and
timing attacks. Additionally, we report how typical resiliency
defenses will affect honest (nominal) and malicious (attack)
mission scenarios. Results are averaged over 5 trials for all
tables, where each entry of the table is the area under the
curve of the attitude error metric described below. A smaller
value in a table entry means a more successful defense as it
represents less cumulative attitude error. The reader can refer
to the appendix for example-based visualizations of attack
impacts.

A. Attitude Error Metric

Attitude error is defined as the angular displacement in
radians of the satellite’s SO(3) orientation relative to the goal
orientation, q1. Error is computed by finding the magnitude of
the axis-angle representation [22] of the quaternion quotient
between current and goal orientation, as follows:

∆q(t) = q(t)q−1
1

Θ(t) = 2acos(∆qw(t))

Where:

q(t) : Quaternion attitude time series
q1 : Goal orientation

∆q(t) : Orientation relative to goal
Θ(t) : Angular displacement (radians)

The attitude error is taken as Θ(t), the angular displacement
relative to goal. For coarse-grained evaluation of three-axis
stabilization performance under various attack scenarios, an
additional area-under-the-curve (AUC) metric is defined as
Θ(t) integrated through time:

AUC =

∫ T

t0

Θ(t)dt

Where t0 is the fixed time offset into the maneuver at which
the cyber attack is launched. T is a predefined timeout value
at which the satellite is known to achieve its goal orientation
under nominal conditions, with no cyber attack taking place.
AUC is computed using rectangular Euler integration for
each simulated scenario. It is assumed that AUC takes on
some ideal, minimal value under nominal conditions when the
satellite converges smoothly to the goal orientation. Given that
Θ(t) is non-negative by definition, any sub-optimal deviation
from the expected trajectory manifests as an increase to AUC.
Therefore, AUC may be taken as a metric for evaluating
the degree of disruption to the three-axis stabilization in the
presence of a cyber attack. We use the AUC measurement in
Tables I through X.

TABLE I: Honest case: turn star tracker off if quaternion difference is smaller
than δmin for n consecutive times. NO redundancy defenses

Consecutive limit checker alarms before response
δmin 2 4 6 8 10

0.00001 5.127 5.127 5.126 5.127 5.127
0.0001 5.126 5.127 5.127 5.127 5.127
0.001 5.127 5.127 5.127 5.127 5.127
0.01 118.369 5.127 5.127 5.127 5.126
0.1 168.598 118.369 5.127 5.127 5.127

TABLE II: Honest case: turn star tracker off if quaternion difference is smaller
than δmin for n consecutive times. WITH redundancy defenses

Consecutive limit checker alarms before response
δmin 2 4 6 8 10

0.00001 5.133 5.132 5.132 5.132 5.133
0.0001 5.133 5.133 5.132 5.132 5.132
0.001 5.132 5.133 5.133 5.133 5.132
0.01 117.794 5.133 5.132 5.132 5.133
0.1 168.677 117.801 5.133 5.132 5.133

B. Data Manipulation Attack Results

We evaluate the impact of malicious sensor values on the
attitude of the satellite. We study two defense strategies against
this attack: first, redundancy of three star trackers (where only
one is malicious), and second a defense of detecting when the
variation between consecutive quaternion values is too high or
low. In this section, we primarily study how an operator sets
and applies limit checks to flag any unsafe variation of quater-
nion values. Each test also applies a limit check to ensure the
raw quaternion values are sensible (i.e., any quaternion values
outside the range of [−1, 1] are flagged). These are reasonable
thresholds to set on a mission, as nonsensical attitude values
or dramatic attitude shifts both could damage the satellite and
represent faulty behavior.

1) Determining Thresholds for Honest Case: We first run
functional tests on different possible limit checker configu-
rations and redundancy scenarios when the star tracker(s) are

TABLE III: Honest case: turn star tracker off if quaternion difference is bigger
than δmax for n consecutive times. NO redundancy defenses

Consecutive limit checker alarms before response
δmax 2 4 6 8 10

0.00001 168.598 118.368 5.127 5.127 5.127
0.0001 168.599 118.370 5.127 5.127 5.127
0.001 168.595 118.368 5.127 5.127 5.127
0.01 168.592 5.126 5.127 5.127 5.127
0.1 5.127 5.127 5.126 5.126 5.127

TABLE IV: Honest case: turn star tracker off if quaternion difference is bigger
than δmax for n consecutive times. WITH redundancy defenses

Consecutive limit checker alarms before response
δmax 2 4 6 8 10

0.00001 168.669 117.801 5.133 5.133 5.133
0.0001 168.672 117.809 5.133 5.133 5.133
0.001 168.664 117.806 5.133 5.133 5.132
0.01 168.677 5.133 5.133 5.133 5.133
0.1 5.132 5.132 5.132 5.132 5.132



TABLE V: Data attack: turn star tracker off if quaternion difference is bigger
than δmax in columns or smaller than δmin in rows. Consecutive failures=6.
NO redundancy defenses. N/A if δmin ≥ δmax

δmax

δmin 0.0001 0.001 0.01 0.1

0.00001 161.188 162.500 191.670 228.594
0.0001 N/A 162.813 192.109 228.641
0.001 N/A N/A 194.488 226.909
0.01 N/A N/A N/A 229.570

TABLE VI: Data attack: turn star tracker off if quaternion difference is bigger
than δmax in columns or smaller than δmin in rows. Consecutive failures=6.
WITH redundancy defenses. N/A if δmin ≥ δmax

δmax

δmin 0.0001 0.001 0.01 0.1

0.00001 156.508 151.699 74.316 80.627
0.0001 N/A 151.111 74.528 80.626
0.001 N/A N/A 107.254 79.744
0.01 N/A N/A N/A 109.540

honest. Table I shows the attitude error after running the func-
tional test without any redundancy and only one single honest
star tracker. The table rows correspond to the limit checker
settings of triggering an alarm if the data values changed by
less than the threshold δmin. The columns correspond with
how many times in a row this threshold δmin is seen before
the limit checker marks the star tracker as malicious and turns
it off. Most configurations in the table didn’t impact nominal
operations, but assuming δmin of less than 0.1 or less than 0.01
led to mission failures when the consecutive failure count was
too low. Thus, it would make sense for the mission operator
to set the δmin values to something like 0.001 or smaller. This
is the most sensitive these thresholds could possibly be; in a
real mission, the satellite developer would likely have to relax
these thresholds even further to handle all nominal operations,
making possible attacks that work within these scenarios easier
to execute in a real mission setting. The results in Table II are
similar given that the data is the same across star trackers,
aside from noise applied to the quaternions that was sampled
from a normal distribution with a standard deviation of 0.1.

On the other end, Table III and Table IV correspond to
the limit checker settings of triggering an alarm if the data
values changed by greater than the threshold δmax, without
and with redundancy respectively. The safest bet for detecting
faults while still handling the nominal setting would be to set
σmax >= 0.1, and set the consecutive failure configuration
to ≥ 6, though higher would likely be better to avoid being
too sensitive for other nominal attitude maneuvers. As in the
case with δmin configurations, redundancy does not make a
noticeable difference in the response to different thresholds
since the data across star trackers is close to the same given
the amount of data noise in the simulation.

2) Data Manipulation Attacks within Honest Thresholds:
Next, we perform a manipulated data attack that stays within
the allowable honest limit checker settings derived from the
previous step. Given the results in Table I through Table IV,

we show the limit checker consecutive failures setting of 6 for
Table V and Table VI. However, we note that regardless of
how many consecutive failures the operator allows, the attack
is able to evade detection completely. To perform a stealthy
attack, the malicious star tracker increments or decrements
each quaternion value by the average threshold between the
big and small threshold: δattack = (δmin+δmax)

2 . It continues
incrementing by δattack until it reaches the limit of quaternion
value 1, then begins decrementing by δattack until it reaches
−1. This attack leads to failure of every functional test, i.e.,
the satellite is never able to achieve its target orientation.
Tables V,VI show the effectiveness of this attack. Despite
tight constraints tuned for the honest setting, the stealthy attack
achieves full mission compromise.

3) Limit Checker and Redundancy are Insufficient for Ma-
nipulated Data Attack: In the manipulated data attack, the
limit checker flags a star tracker as anomalous only if its
reported values are outside of normal (e.g., not between −1
and 1), or if the change in quaternion values are greater than
a certain threshold between time t and t + 1 or less than a
certain threshold. Of course, this particular installation of the
manipulated data attack could be defended against if we also
implement a defense that checks that the pairwise difference
between star trackers is within a certain range [23].

However, we argue that continuously adding more static
limit checker policies in a “cat-and-mouse” game with the
attack is generally ineffective. Whatever thresholds do get
set in the limit checker, a malicious star tracker could just
send data that is above the minimal threshold and below
the maximal threshold. This motivates the need of a new
anomaly detection technique for satellite operators that extends
the capabilities of today’s limit checker applications. For the
scenario of pairwise differences, this would only work if only
one of the three star trackers is compromised. Additionally,
redundancy techniques often have a variety of sensor types,
such as determining satellite orientation through fusing data
from a star tracker, sun sensor, and earth tracker. And Park et
al. note that the pairwise difference defense they propose may
not hold up in stealthy attack scenarios [23].

Additionally, the limit checker has a maximum table size, as
it must react to every single message and determine actions for
every single watchpoint. The limit checker default size is not
large enough to write multiple threshold values for every single
sensor value and possible anomalous scenario. Even if the
limit checker were large enough, writing possible thresholds
for many different attack scenarios would put far too much
burden on the developer for it to be a practical defense.

C. Time Manipulation Attack

Next, we investigate the Time Manipulation Attack where
the compromised satellite peripheral withholds and then bursts
(non-manipulated) data. In particular, we show that bursty
communication from a malicious peripheral causes either 1)
failure to successfully adjust the attitude of the satellite or 2)
degradation of attitude maneuver performance on the satellite.



We also elaborate further in this section that the limit checker
works poorly for time frequency thresholds.

1) Determining Timing Thresholds for Honest Case: Tim-
ing inconsistencies under no malicious adversary could be
caused by different factors. One issue more likely in space
than on Earth are radiation-induced faults [24]. Another issue
is hardware aging [25]. A satellite developer may try detecting
faults by monitoring the frequency at which data is sent. We
thus test the limit checker at various levels of frequency at
which to take action on the star tracker on differing levels of
timing noise in the honest setting.

Tables VII and VIII show results of honest sensors at
different noise levels and different limit checker thresholds.
Timing noise in actual star tracker peripheral hardware is
difficult to quantify, especially due to the variety of star
tracker options at different price points, changes in timing
behavior as hardware ages during a multi-year mission, and
the difficulty of determining the exact impact of radiation on
different hardware. Therefore, we test on a subset of possible
honest noise values.

The columns of Tables VII and VIII correspond with
how much timing noise the honest star tracker exhibits. The
standard deviation is a half-normal distribution starting at 1
and truncated at 6. In other words, the burst amount can be
between 1 (normal 1hz data timing) and 6, where the data
would be sent in a burst of 6 data points in a row after 6
seconds.

Based on experimentation, 0.1 seemed like the most rea-
sonable standard deviation to set an honest, non-faulting star
tracker to. This noise amount was low enough that a burst
of two data points or higher in the honest noise setting did
not occur during testing, though it might experience multiple
bursts over a multi-year satellite mission. The following tim-
ing attacks thus considered scenarios where the honest star
trackers were set to a noise standard deviation level of 0.1.
While timing jitter is less likely under low noise conditions,
a developer would still want to tolerate small levels of noise
so as not to trigger a star tracker shut-off/restart if the timing
jitter is only temporary. Therefore, in the honest setting, a
developer might not want to trigger an automated limit checker
response after a burst of two data points at once, but may
want to respond if there is a burst of three. We next perform
manipulated time attacks and show that this burst of three limit
threshold can lead to unacceptable mission slowdown, despite
the attacker only being able to stealthily send bursts of two at
a time.

2) Time Manipulation Attacks under Honest Thresholds:
The manipulated data attack sends a burst of n data elements
after n seconds, and no other data from the malicious star
tracker in between those n seconds. Table IX and Table X
show the effect of bursty attacks at different burst sizes when
there is a single peripheral or multiple, respectively. The burst
size in each column represents at what burst frequency a limit
checker flags the star tracker. The rows correspond with the
actual burst size of the attack occurring.

Even for attack burst size 2, performance degrades in both

TABLE VII: Honest case: turn star tracker off if there is a burst of n or more
data points, where row is n. Column is standard deviation of burst size . NO
redundancy.

Burst Timing noise standard deviation
threshold 0.1 0.25 0.5

2 5.127 4.828 172.859
3 5.127 4.828 5.189
4 5.127 4.828 5.189

TABLE VIII: Honest case: turn star tracker off if there is a burst of n or
more data points, where row is n. Column is likelihood of a burst (standard
deviation). WITH redundancy.

Burst Timing noise standard deviation
threshold 0.1 0.25 0.5

2 5.133 4.971 5.125
3 5.132 4.933 4.970
4 5.132 4.933 4.970

Table IX and Table X. Even when there is a majority of honest
star trackers as in Table X, a burst size of higher than 3 allows
the single compromised peripheral to degrade the satellite. The
runtime for the functional test even with two other honest star
trackers is increased by ≈ 3.4%. Due to realtime constraints of
the satellite, even a 3.4% increase in runtime can sometimes
be catastrophic for a mission.

3) Limit Checker and Redundancy are Insufficient for Ma-
nipulated Time Attack: Neither redundancy nor the limit
checker are adequate to fully prevent the impacts of manipu-
lated time attacks, while also handling temporary timing jitter
in the honest setting, leading to a dilemma for the developer
of whether to prioritize reliability or security.

Perhaps this could be fixed by having the limit checker
check consecutive sets of bursts. For example, let us assume
the operator thinks more than two messages per second should
lead to immediate action. The operator could add custom code
to check this, as we did in our limit checker tuning. They

TABLE IX: Timing attack: turn star tracker off if there is a burst of n or
more data points, where row is n. Column is what frequency triggers star
tracker shutoff. NO redundancy. For example, the first row shows results for
error area-under-curve of a bursty attack of size 2, where the burst frequency
threshold shuts the star tracker off if it bursts in size 2 (leftmost column) to
size 4 (rightmost column).

Burst Burst limit checker threshold
size 2 3 4

2 191.979 5.645 5.645
3 175.372 175.376 38.605
4 179.370 179.383 179.382

TABLE X: Timing attack: turn star tracker off if there is a burst of n or more
data points, where row is n. Column is what frequency triggers star tracker
shutoff. WITH redundancy.

Burst Burst limit checker threshold
size 2 3 4

2 5.176 5.170 5.170
3 5.193 5.192 5.199
4 5.232 5.235 5.236



may deem one or two bursts in a row as honest and no
action is needed, but they may want to take action if there
are more bursts in a row. Unfortunately, consecutive failures
for timing attacks will not be detectable due to the way the cFS
limit checker is architected. Given that the limit checker must
evaluate every star tracker message if it is subscribed, it must
return a pass or fail for each data point when a watchpoint is
encountered. This means that if n− 1 data points are seen in
a second, the limit checker counts this as a pass. When n data
points in a burst are seen, this is one failure. But then when
the next data point is seen, this is n seconds after the previous
burst, which means that the limit checker would return a pass,
and therefore the consecutive failure count returns back to 0.
Therefore, the satellite developer can only trigger action upon
a single burst, or trigger no action at all.

D. More Limit Checker Security Challenges

The NASA cFS limit checker is set to listen to the message
id’s that a developer specifies. It watches for these message
id’s, and compares these to threshold values. As the table of
watchpoints scales up, simply having watchpoints and possible
responses may lead to performance impacts, especially for
smaller satellites. In the case of our limit checker thresh-
olds, we had to write custom comparison functions for both
checking the difference between data values and the timing
frequency of values. By default, the limit checker is only
designed to handle very simple checks, such as checking that
the star tracker quaternion values are in range. Writing these
custom functions, not to mention thinking through all possi-
ble peripheral attacks, becomes burdensome for the satellite
developer.

The limit checker becomes even more “limited” when this
test setting is scaled up into reality. With the redundancy
and the custom thresholds we included in our limit checker
watchpoint table, we already used up 51 out of 176 possible
watchpoints for the default cFS watchpoint table size, or
almost a third of watchpoint slots. This does not yet include
watchpoints for any other subsystem, such as the power system
or thermals, both of which require careful monitoring so as
to not lead to physical destruction of the satellite. Thus, not
only is using the limit checker to handle possible security
issues burdensome on the developer, there may be size, power,
and runtime constraints on constructing a more carefully-tuned
limit checker.

VII. FUTURE WORK

Future work is needed to build satellite architectures that
are more resilient to supply chain attacks.

a) Limitations of existing mitigations in other control
systems and robotic vehicles: One possible approach to miti-
gating the malicious peripheral risk is vendor redundancy, or
using sensors (e.g., star trackers) from multiple vendors. Ven-
dor redundancy is an important step in mitigating this problem,
though it is not sufficient. Vendor redundancy reduces the
likelihood that a majority or all sensors are compromised.
However, if there is one singular sensor from the malicious

vendor, the attacks in this paper are feasible without new
mitigations.

And while thorough supply chain verification by all satellite
owners is ideal, the current state of the space economy
makes this practice unlikely to exist uniformly. Previous work
supports that the space industry may be underprepared and
lacking incentives for such a task [17], [18].

b) Future work directions: Future work should consider
the inherent issues in threshold-based anomaly detection such
as that of the limit checker. Work can use inspiration from
research on attack detection and recovery from other robotic
vehicles, while adjusting to this specific highly-privileged
supply chain attack threat model. Satellite-specific work to
resolve this malicious peripheral dilemma can possibly use
the specific features of this domain to their advantage, such
as the redundancy of sensors in these control systems, as well
as the long mission timespan to perform long-running tests.
Future work could also test on real hardware to measure the
power and runtime overhead of whatever new solutions are
posed.

VIII. CONCLUSION

In this work, we demonstrated that common existing space-
flight software platforms are ill-equipped to handle mali-
cious satellite peripherals. In particular, we demonstrated a
dilemma for space systems in which either the system deploys
countermeasures against malicious components and suffers
potentially unacceptable nominal performance, or the system
cannot survive malicious components. We show this along
two axes: manipulation of data and manipulation of time,
and show that these axes of attacks avoid detection while
leading to unacceptable slowdown or mission failure. We
demonstrated this satellite peripheral dilemma on the core
Flight System from NASA in an state-of-the-art emulated,
closed-loop environment.

REFERENCES

[1] USGS, “Number of Commercial, Government-Civil Satellites
Launched,” 2025, https://www.usgs.gov/media/images/number- c
ommercial-government-civil-satellites-launched.

[2] Iridium, “Iridium satellite time & location,” https://www.iridium.com/
satellite-time-location/.

[3] Maxar, “Next-Generation Weather Satellite Technology,” https://www.
maxar.com/splash/weather.

[4] P. Labs, “Planet Labs Homepage,” https://www.planet.com/.
[5] O. W. in Data, “Cost of Space Launches to Low Earth Orbit,” https:

//ourworldindata.org/grapher/cost-space-launches-low-earth-orbit.
[6] G. Brunetti, G. Campiti, M. Tagliente, and C. Ciminelli, “Cots devices

for space missions in leo,” IEEE Access, 2024.
[7] P. Tedeschi, S. Sciancalepore, and R. Di Pietro, “Satellite-Based Com-

munications Security: A Survey of Threats, Solutions, and Research
Challenges,” Computer Networks, vol. 216, 2022.

[8] S. Jero, J. Furgala, M. A. Heller, B. Nahill, S. Mergendahl, and
R. Skowyra, “Securing the Satellite Software Stack,” in Workshop on
Security of Space and Satellite Systems (SpaceSec), 2024.

[9] B. Cyr, Y. Long, T. Sugawara, and K. Fu, “Position Paper: Space
System Threat Models Must Account for Satellite Sensor Spoofing.” in
Workshop on Security of Space and Satellite Systems (SpaceSec), 2023.

[10] W. Xu, X. Chen, M. Anderson, S. Drager, and F. Kong, “Recovery-
guaranteed sensor attack detection for cyber-physical systems,” 2025
IEEE 31st Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 324–336, 2025. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:279172199

https://www.usgs.gov/media/images/number-commercial-government-civil-satellites-launched
https://www.usgs.gov/media/images/number-commercial-government-civil-satellites-launched
https://www.iridium.com/satellite-time-location/
https://www.iridium.com/satellite-time-location/
https://www.maxar.com/splash/weather
https://www.maxar.com/splash/weather
https://www.planet.com/
https://ourworldindata.org/grapher/cost-space-launches-low-earth-orbit
https://ourworldindata.org/grapher/cost-space-launches-low-earth-orbit
https://api.semanticscholar.org/CorpusID:279172199
https://api.semanticscholar.org/CorpusID:279172199


[11] P. Lu, L. Zhang, M. Liu, K. Sridhar, O. Sokolsky, F. Kong, and I. Lee,
“Recovery from adversarial attacks in cyber-physical systems: Shallow,
deep, and exploratory works,” ACM Computing Surveys, vol. 56, no. 8,
pp. 1–31, 2024.

[12] A. Li, J. Wang, and N. Zhang, “Software availability protection in
cyber-physical systems,” in 34nd USENIX Security Symposium (USENIX
Security 25), 2025.

[13] P. Dash, E. Chan, and K. Pattabiraman, “Specguard: Specification
aware recovery for robotic autonomous vehicles from physical
attacks,” Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:271962902

[14] P. Dash, G. Li, Z. Chen, M. Karimibiuki, and K. Pattabiraman,
“Pid-piper: Recovering robotic vehicles from physical attacks,” in
51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2021. [Online]. Available: https:
//doi.org/10.1109/DSN48987.2021.00020

[15] G. Engineering and N. Technology Directory, “core Flight System,”
2025, https://etd.gsfc.nasa.gov/capabilities/core-flight-system/.

[16] ——, “core Flight System Limit Checker Application Version 2,” 2025,
https://software.nasa.gov/software/GSC-16010-1.

[17] R. McAmis, G. Haas, M. Sim, D. Kohlbrenner, and T. Kohno, “Short:
Unencrypted Flying Objects: Security Lessons from University Small
Satellite Developers and Their Code,” in Symposium on Vehicle Security
and Privacy (VehicleSec’25), 2025.

[18] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt, T. Holz, and A. Ab-
basi, “Space Odyssey: An Experimental Software Security Analysis of
Satellites,” in 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 2023.

[19] J. Pavur and I. Martinovic, “Building a launchpad for satellite cyber-
security research: lessons from 60 years of spaceflight,” Journal of
Cybersecurity, vol. 8, no. 1, p. tyac008, 2022.

[20] G. Falco and N. Boschetti, “A security risk taxonomy for commercial
space missions,” in ASCEND 2021, 2021, p. 4241.

[21] P. W. Kenneally, S. Piggott, and H. Schaub, “Basilisk: A Flexible,
Scalable and Modular Astrodynamics Simulation Framework,” Journal
of Aerospace Information Systems, vol. 17, no. 9, 2020.

[22] J. R. Wertz, Ed., Spacecraft Attitude Determination and Control,
ser. Astrophysics and Space Science Library. Dordrecht: Springer
Netherlands, 1978, vol. 73. [Online]. Available: https://link.springer.co
m/10.1007/978-94-009-9907-7

[23] J. Park, R. Ivanov, J. Weimer, M. Pajic, and I. Lee, “Sensor attack
detection in the presence of transient faults,” in Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems.
New York, NY, USA: Association for Computing Machinery, 2015.
[Online]. Available: https://doi.org/10.1145/2735960.2735984

[24] R. Ecoffet, “Overview of in-orbit radiation induced spacecraft anoma-
lies,” IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 1791–
1815, 2013.

[25] M. T. H. Anik, S. Guilley, J.-L. Danger, and N. Karimi, “On the effect of
aging on digital sensors,” in 2020 33rd International Conference on VLSI
Design and 2020 19th International Conference on Embedded Systems
(VLSID). IEEE, 2020, pp. 189–194.

APPENDIX

A. Example Attack Visualizations

In order to conceptualize the attacks, in this section, we
provide a set of visualizations of the impact of the attacks.
Figure 2 shows a visualization of the simulation under a
manipulated data attack, as well as the honest scenario,
without any defenses. The attack clearly causes the satellite
to tumble uncontrollably, whereas with an honest star tracker,
the satellite can always orient itself properly relative to Earth.

Additionally, in Figure 3, we show the difference between
the current and target quaternion values over time. In particu-
lar, Figure 3g and Figure 3h show an example of the manipu-
lated data attack when the satellite uses multiple star trackers
or only one star tracker, respectively. However, in either case,
the quaternions never converge to the goal orientation.

In the case of a burst size of 3 with no defenses in
place, interesting behavior is visible through time series plots.
Figure 3b and Figure 3e show the difference across time
between the current quaternion (orientation) values for the
satellite and the target quaternion values, which can be seen
as an error metric simpler than the one we describe above.
With redundancy, there is slight performance degradation,
as convergence happens longer compared to nominal timing
conditions. When there is no redundancy, the satellite achieves
“marginal stability”, meaning it is not completely unstable or
completely stable. This could still cause negative effects, such
as requiring the reaction wheels to do extra physical work
to attempt to achieve convergence, or failure of the mission
entirely due to the inability to orient properly.

https://api.semanticscholar.org/CorpusID:271962902
https://doi.org/10.1109/DSN48987.2021.00020
https://doi.org/10.1109/DSN48987.2021.00020
https://etd.gsfc.nasa.gov/capabilities/core-flight-system/
https://software.nasa.gov/software/GSC-16010-1
https://link.springer.com/10.1007/978-94-009-9907-7
https://link.springer.com/10.1007/978-94-009-9907-7
https://doi.org/10.1145/2735960.2735984


(a) Malicious star tracker: Right after attack begins. (b) Malicious star tracker: 3s after attack begins. (c) Malicious star tracker: 6s after attack begins.

(d) Honest star tracker: 0s into mission. (e) Honest star tracker: 3s into mission. (f) Honest star tracker: 6s into mission.

Fig. 2: A malicious star tracker can cause a satellite to tumble using the Data Manipulation attack (top), whereas, with an honest star tracker, the satellite
would maintain its attitude (bottom).

(a) Honest. δmax=0.1. No redundancy (b) Burst size 3. With redundancy. No LC thresholds. (c) Burst size 6. With redundancy. No LC thresholds

(d) Honest. δmax=0.0001. No redundancy (e) Burst size 3. No redundancy. No LC thresholds. (f) Burst size 6. No redundancy. No LC thresholds.

(g) Data Manipulation. δmax=0.1. Redundancy (h) Data Manipulation. δmax=0.1. No redundancy.

Fig. 3: Time versus attitude error of different cases of attacks. The four lines are the four quaternion values making up the satellite’s orientation. The attitude
error for each quaternion is the current quaternion value subtracted by the target quaternion value. The red dotted vertical line marks when the attack starts.
If the quaternion lines end before the x-axis limit, this means that it passed at that point and exited the test.


	Introduction
	Background
	Threat Model
	Attacks and Common Mitigations Overview
	Experimental Setup
	Emulation framework
	Attack Setup
	Testing

	Attack Results
	Attitude Error Metric
	Data Manipulation Attack Results
	Determining Thresholds for Honest Case
	Data Manipulation Attacks within Honest Thresholds
	Limit Checker and Redundancy are Insufficient for Manipulated Data Attack

	Time Manipulation Attack
	Determining Timing Thresholds for Honest Case
	Time Manipulation Attacks under Honest Thresholds
	Limit Checker and Redundancy are Insufficient for Manipulated Time Attack

	More Limit Checker Security Challenges

	Future Work
	Conclusion
	References
	Appendix
	Example Attack Visualizations


